Avoid Division By Zero In Numpy.where()


Answer :

Simply initialize output array with the fallback values (condition-not-satisfying values) or array and then mask to select the condition-satisfying values to assign -

out = a.copy() out[mask] /= b[mask] 

If you are looking for performance, we can use a modified b for the division -

out = a / np.where(mask, b, 1) 

Going further, super-charge it with numexpr for this specific case of positive values in b (>=0) -

import numexpr as ne      out = ne.evaluate('a / (1 - mask + b)') 

Benchmarking

enter image description here

Code to reproduce the plot:

import perfplot import numpy import numexpr  numpy.random.seed(0)   def setup(n):     a = numpy.random.rand(n)     b = numpy.random.rand(n)     b[b < 0.3] = 0.0     mask = b > 0     return a, b, mask   def copy_slash(data):     a, b, mask = data     out = a.copy()     out[mask] /= b[mask]     return out   def copy_divide(data):     a, b, mask = data     out = a.copy()     return numpy.divide(a, b, out=out, where=mask)   def slash_where(data):     a, b, mask = data     return a / numpy.where(mask, b, 1.0)   def numexpr_eval(data):     a, b, mask = data     return numexpr.evaluate('a / (1 - mask + b)')   perfplot.save(     "out.png",     setup=setup,     kernels=[copy_slash, copy_divide, slash_where, numexpr_eval],     n_range=[2 ** k for k in range(22)],     xlabel="n" ) 

A slight variation on Divakar's answer is to use the where and out arguments of Numpy's divide function

out = a.copy() np.divide(a, b, out=out, where=mask) 

For big arrays, this seems to be twice as fast:

In [1]: import numpy as np  In [2]: a = np.random.rand(1000, 1000)    ...: b = np.random.rand(1000, 1000)    ...: b[b < 0.3] = 0.0  In [3]: def f(a, b):    ...:     mask = b > 0    ...:     out = a.copy()    ...:     out[mask] = a[mask] / b[mask]    ...:     return out    ...:       In [4]: def g(a, b):    ...:     mask = b > 0    ...:     out = a.copy()    ...:     np.divide(a, b, out=out, where=mask)    ...:     return out    ...:       In [5]: (f(a, b) == g(a, b)).all()  # sanity check Out[5]: True  In [6]: timeit f(a,b) 26.7 ms ± 52.6 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)  In [7]: timeit g(a,b) 12.2 ms ± 36 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 

The reason why this is faster is likely since this avoids making a temporary array for the right-hand-side, and since the 'masking' is done internally to the divide function, instead of by the indexing of a[mask], b[mask] and out[mask].


Comments

Popular posts from this blog

Chemistry - Bond Angles In NH3 And NCl3

Are Regular VACUUM ANALYZE Still Recommended Under 9.1?

Change The Font Size Of Visual Studio Solution Explorer