Combinatoric 'N Choose R' In Java Math?
Answer :
The Formula
It's actually very easy to compute N choose K without even computing factorials.
We know that the formula for (N choose K) is:
    N!  --------  (N-K)!K! Therefore, the formula for (N choose K+1) is:
       N!                N!                   N!               N!      (N-K) ---------------- = --------------- = -------------------- = -------- x ----- (N-(K+1))!(K+1)!   (N-K-1)! (K+1)!   (N-K)!/(N-K) K!(K+1)   (N-K)!K!   (K+1) That is:
(N choose K+1) = (N choose K) * (N-K)/(K+1) We also know that (N choose 0) is:
 N! ---- = 1 N!0! So this gives us an easy starting point, and using the formula above, we can find (N choose K) for any K > 0 with K multiplications and K divisions.
Easy Pascal's Triangle
Putting the above together, we can easily generate Pascal's triangle as follows:
    for (int n = 0; n < 10; n++) {         int nCk = 1;         for (int k = 0; k <= n; k++) {             System.out.print(nCk + " ");             nCk = nCk * (n-k) / (k+1);         }         System.out.println();     } This prints:
1  1 1  1 2 1  1 3 3 1  1 4 6 4 1  1 5 10 10 5 1  1 6 15 20 15 6 1  1 7 21 35 35 21 7 1  1 8 28 56 70 56 28 8 1  1 9 36 84 126 126 84 36 9 1  BigInteger version
  Applying the formula for BigInteger is straightforward:
static BigInteger binomial(final int N, final int K) {     BigInteger ret = BigInteger.ONE;     for (int k = 0; k < K; k++) {         ret = ret.multiply(BigInteger.valueOf(N-k))                  .divide(BigInteger.valueOf(k+1));     }     return ret; }  //... System.out.println(binomial(133, 71)); // prints "555687036928510235891585199545206017600" According to Google, 133 choose 71 = 5.55687037 × 1038.
References
- Wikipedia/Binomial coefficient
- Wikipedia/Pascal's triangle
- Wikipedia/Combination
The apache-commons "Math" supports this in org.apache.commons.math4.util.CombinatoricsUtils
The recursive definition gives you a pretty simple choose function which will work fine for small values. If you're planning on running this method a lot, or on large values, it would pay to memoize it, but otherwise works just fine.
public static long choose(long total, long choose){     if(total < choose)         return 0;     if(choose == 0 || choose == total)         return 1;     return choose(total-1,choose-1)+choose(total-1,choose); } Improving the runtime of this function is left as an exercise for the reader :)
Comments
Post a Comment