Build A Killer Sudoku Solver


Answer :

GolfScript, 138 characters

n%~[~]:N;1/:P.&:L;9..*?{(.[{.9%)\9/}81*;]:§;L{.`{\~@@=*}+[P§]zip%{+}*\L?N==}%§9/..zip+\3/{{3/}%zip{{+}*}%}%{+}*+{.&,9=}%+1-,!{§puts}*.}do; 

This is a killer sudoku solver in GolfScript. It expects input on STDIN in two rows as given in the example above.

Please note: Since the puzzle description does not make any restrictions on execution time I preferred small code size over speed. The code tests all 9^81 grid configurations for a solution which may take some time on a slow computer ;-)


R - 378 characters

Assuming

x="AABBBCDEFGGHHCCDEFGGIICJKKFLMMINJKOFLPPQNJOORSPTQNUVVRSTTQWUUXXSYZWWaaXXSYZWbbbcc" y="3 15 22 4 16 15 25 17 9 8 20 6 14 17 17 13 20 12 27 6 20 6 10 14 8 16 15 13 17" 

378 characters:

z=strsplit v=sapply R=rep(1:9,9) C=rep(1:9,e=9) N=1+(R-1)%/%3+3*(C-1)%/%3 G=z(x,"")[[1]] M=as.integer(z(y," ")[[1]])[order(unique(G))] s=c(1,rep(NA,80)) i=1 repeat if({n=function(g)!any(v(split(s,g),function(x)any(duplicated(x,i=NA)))) S=v(split(s,G),sum) n(R)&&n(C)&&n(N)&&n(G)&&all(is.na(S)|S==M)}){if(i==81)break;i=i+1;s[i]=1}else{while(s[i]==9){s[i]=NA i=i-1};s[i]=s[i]+1} s 

takes about an hour on my modest PC to reach the expected solution, after 2,964,690 iterations.


De-golfed:

ROWS   <- rep(1:9, 9) COLS   <- rep(1:9, each = 9) NONETS <- 1 + (ROWS - 1) %/% 3 + 3 * (COLS - 1) %/% 3 CAGES  <- strsplit(x, "")[[1]] SUMS   <- as.integer(strsplit(y, " ")[[1]])[order(unique(CAGES))]  is.valid <- function(sol) {     has.no.repeats <- function(sol, grouping) {       !any(vapply(split(sol, grouping),                   function(x) any(duplicated(x, incomparables = NA)),                   logical(1)))    }    has.exp.sum <- function(sol, grouping, exp.sums) {       sums <- vapply(split(sol, grouping), sum, integer(1))       all(is.na(sums) | sums == exp.sums)    }     has.no.repeats(sol, ROWS  ) &&    has.no.repeats(sol, COLS  ) &&    has.no.repeats(sol, NONETS) &&    has.no.repeats(sol, CAGES ) &&    has.exp.sum(sol, CAGES, SUMS)         }  sol <- c(1L, rep(NA, 80)) # start by putting a 1 i <- 1L                   # in the first cell it <- 0L  repeat {    it <- it + 1L    if (it %% 100L == 0L) print(sol)    if(is.valid(sol)) {         # if everything looks good       if (i == 81L) break         # we are either done       i <- i + 1L                 # or we move to the next cell       sol[i] <- 1L                # and make it a 1    } else {                    # otherwise       while (sol[i] == 9L) {      # while 9s are found          sol[i] <- NA             # replace them with NA          i <- i - 1L              # and move back to the previous cell       }       sol[i] <- sol[i] + 1L       # when a non-9 is found, increase it    }                           # repeat } sol 

Ruby, 970 characters

A,B=gets,gets.split L=[] R=[] U=[] D=[] N=[] C=[] S=[] O=[0]*81 z='A' (0..324).map{|j|U<<j;D<<j;R<<(j+1)%325;L<<(j+324)%325;N<<j;C<<j;S<<0} X=->s,j,c,cf,n{j<81?(z==A[j]?(0..8).map{|i|X[s-1-i,j+1,c+[i],cf+[1+j,1+81+27*i+j/9,1+81+27*i+9+j%9,1+81+27*i+18+j/3%3+j/27*3],n+[i+1]]}:X[s,j+1,c,cf,n+[0]]if s>=0):(h=U.size;cf.uniq.sort.map{|l|N<<n;L<<(L[h]||h);R<<h;U<<U[l];D<<l;C<<l;S[l]+=1;L[R[-1]]=R[L[-1]]=U[D[-1]]=D[U[-1]]=L.size-1}if s==0)} Y=->c{L[R[c]]=L[c];R[L[c]]=R[c];i=D[c];(j=R[i];(U[D[j]]=U[j];D[U[j]]=D[j];S[C[j]]-=1;j=R[j])while j!=i;i=D[i])while i!=c} Z=->c{i=U[c];(j=L[i];(S[C[j]]+=1;U[D[j]]=j;D[U[j]]=j;j=L[j])while j!=i;i=U[i])while i!=c;L[R[c]]=c;R[L[c]]=c} B.map{|k|X[k.to_i,0,[],[],[]];z=z=='Z'?'a':z.next} s=->k{c=R[0];c<1?($><<(O[0,k].map{|s|N[s]}.transpose.map &:max)*""):(g=S[b=c];g=S[b=c]if S[c]<g while 0<c=R[c];Y[b];r=D[b];(O[k]=r;j=R[r];(Y[C[j]];j=R[j])while j!=r;s[k+1];r=O[k];c=C[r];j=L[r];(Z[C[j]];j=L[j])while j!=r;r=D[r])while r!=b;Z[b])} s[0] 

The above ruby code is opposite to my GolfScript subscription. It is quite long (and not yet fully golfed), but optimized for speed. The killer sudoku given above is solved in well under a second (with my original java version it was only a few milli seconds). The solver itself is a basic implementation of Knuth's DLX algorithm.

Input must be given as two lines on STDIN. Example (online):

> AABBBCDEFGGHHCCDEFGGIICJKKFLMMINJKOFLPPQNJOORSPTQNUVVRSTTQWUUXXSYZWWaaXXSYZWbbbcc 3 15 22 4 16 15 25 17 9 8 20 6 14 17 17 13 20 12 27 6 20 6 10 14 8 16 15 13 17  215647398368952174794381652586274931142593867973816425821739546659428713437165289 

Comments

Popular posts from this blog

Chemistry - Bond Angles In NH3 And NCl3

Are Regular VACUUM ANALYZE Still Recommended Under 9.1?

Change The Font Size Of Visual Studio Solution Explorer